

The SXT and New Configurations

Rob Petre

SXT Lead Scientist

Robert.petre-1@nasa.gov

Applying current SXT approach to new Con-X configurations - 1

- For a single telescope system, given no other constraints, the most straightforward approach is make everything two times larger:
 - 20 m focal length
 - 3.2 m diameter
 - 40 cm segment length
 - 800 µm substrate

Benefits:

- Linear tolerances double (angular tolerances remain constant)
- Alternatively, maintaining linear tolerances provides incremental performance improvement

Drawbacks:

- Mass increases by factor of >8
- Heater power becomes >4 times larger
- Substrates become unwieldy, if large enough pieces can be found
 - Full substrate metrology would become impossible
- New alignment and calibration facilities would be required (existing ones are marginal for baseline)

October 14/15, 2004

SXT Incorporates Modular Approach and Segmented Reflectors

1.6 m diameter at P-H intersection

Applying current SXT approach to new Con-X configurations - 2

- A more practical approach, given available substrate material:
 - Maintain current substrate thickness reduces substrate mass by ~2
 - Maintain current substrate and module dimensions
 - More modules, more structural mass
 - Slightly larger diameter needed to compensate
 - Conserving f/number then requires slightly longer focal length
 - Overall mass is probably 5 times that of 1.6 m baseline
 - Increased heater power requirement still applies
- The simplest baseline single mirror has ~22 m focal length and ~3.5 m diameter
- Such a mirror is as buildable as the current baseline

General considerations regarding a new mirror design

- Modular design makes scaling to a larger SXT feasible with no imaging performance loss
- Single telescope diameter must be >3.2 m to meet the Constellation-X area requirement
- F/number (focal length) increases beyond ~6 provide only minor increases to collecting area
 - Increased plate scale with larger f/number leads to higher non-X-ray background
- Modular approach allows for nonstandard aperture cross sections
- Increased system size offers major assembly/alignment/calibration challenges

October 14/15, 2004 FST-5

Prospects and challenges for improved angular resolution

- SXT system requirement is 15" HPD, goal is 5"
 - Requires ~3.5" SXT mirror
- Error budget for 5" HPD system exists all tolerances shrink by factor of ~3
- Recent progress on reflectors brings meeting resolution goal into the realm of possibility
- Modular approach keeps problem tractable

October 14/15, 2004

FST-6

Baseline SXT Angular Resolution Error Budget

Contributors (HPD - arcsec)	Rqmt	Margin	Allocations					Rationale
RGS Resolution	15.00	3.92	14.48					4 satellites, post-processed
Co-add 4 satelites				1.00				Superposition of data using X-ray centroids
On-Orbit Telescope - single satelite				14.12				RSS
OCD pixelization error				0.41				0.5 arcsec pixels
Grating resolution error				3.00				Estimale
XMS Resolution	15.00	4.95	14.16					4 satellities, postprocessed
Co-add 4 satelities				1.00				Superposition of data using X-ray centroids
On-Orbit Telescope - single satellite				14.12				RSS
Calorimeter pixelization error					4.08			5 arcsec pixels
Telescope level effects					5.20			RSS
 Image reconstruction errors (over obs) 						4.24		RSS
 SXT/Telescope mounting strain 						2.00		Eng. estimate based on Chandra experience
 SXT/SI vibration effects 						2.00		Chandra experience (litter)
 SXT/SI misalignment (off-axis error) 						1.00		Chandra experience
- SXT/SI focus error						0.20		Analysis
 SXT FMA - on-orbit performance 					12.48			RSS
- SXT FMA launch shifts						2.00		Eng. est. based on Chandra
- Thermal errors						2.24		RSS
 Material stability effects 						1.00		Est. based on Chandra work
- SXT FMA, as built						12.07		RSS
Gravity release							1.50	FEA analysis using vertical assy
Bonding strain							3.00	Eng. estimate, analysis in process
Alignment errors (using CDA)							3.38	RSS
Installation in housing							5.00	Est. based on OAP1 testing
Optical elements							9.90	Est. based on tech dev program

- Achievement of 15 arc second system resolution requires <12.5 arc second SXT resolution
- Largest SXT error budget component is the reflector figure

October 14/15, 2004 FS1

Improvements necessary for higher angular resolution - 1

- Substrates steady progress toward improved quality and consistency
 - Substrates supporting 5" are foreseeable using current approach
- Metrology now competes with substrates as most pressing technical challenge
 - New, state-of-the-art tools, like high speed interferometer, will improve precision and repeatability in some crucial spatial frequency domains
 - Fixturing is the most fundamental problem
- Mandrels surface figure must be improved by a factor of ~2
 - This will require the development of new metrological approaches at Zeiss
 - A 2" HPD mandrel (50 m focal length) was made for XEUS almost good enough
- Fixturing modular approach keeps problem tractable
 - Housings must be considerably stiffer

October 14/15, 2004 FST–8

Improvements necessary for higher angular resolution - 2

- Alignment accuracy must be improved by a factor of ~3
 - Piezoelectic actuators have needed accuracy
 - 60 degree arcs make CDA measurements ambiguous; shorter arcs will exacerbate difficulty
 - Gravity effects become much more prominent
 - Alignment must be carried out in thermally stable environment
- Calibration entirely new facility must be developed, preferably vertical
- Thermal CTE-matched materials are essential
 - Elimination of epoxy is highly desirable to remove bi-layer effect
 - Allowed temperature and gradient range becomes a major engineering challenge, from assembly through flight
 - Ideally, zero-CTE materials should be used (ULE glass, CFC structure)

October 14/15, 2004 FS

Summary

- The current SXT approach is amenable to new configurations
 - Modular configuration allows for non-standard aperture cross sections
 - Caution must be exercised about increased mass
- The prospects for approaching 5" angular resolution are promising, but challenging
 - Steady progress on reflectors makes success possible
 - Largest challenges are alignment and thermal design
 - Project must recognize need for capital investments (metrology, alignment, calibration)

October 14/15, 2004 FST–10